Communication

Nearly Isostructural Polymorphs of Ethynylbenzene: Resolution of \#CH... D (arene) and Cooperative \#CH...ロ(C\#C) Interactions by Pressure Freezing
J. Am. Chem. Soc., 2007, 129 (42), 12620-12621•DOI: 10.1021/ja074885r • Publication Date (Web): 27 September 2007

Downloaded from http://pubs.acs.org on February 14, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 3 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Nearly Isostructural Polymorphs of Ethynylbenzene: Resolution of $\equiv \mathrm{CH} \cdots \pi($ arene $)$ and Cooperative $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ Interactions by Pressure Freezing

Kamil Dziubek, Marcin Podsiadło, and Andrzej Katrusiak*
Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Received July 3, 2007; E-mail: katran@amu.edu.pl

Ethynylbenzene (phenylacetylene, hereafter PA) is the prototypic aromatic hydrocarbon where cohesive forces are dominated by $\mathrm{CH} \cdots \pi$ interactions. It is also a substrate for acetylenic coupling synthesis, yielding potential artificial receptors for molecular recognition, ${ }^{1}$ or for obtaining polyphenylacetylene, a candidate material for electronic applications exhibiting interesting photoinduced semiconducting properties. ${ }^{2-4}$ The role of weak hydrogen bonds, including $\mathrm{CH} \cdots \pi$ interactions, for the molecular association and formation of crystal structures has been discussed for decades. ${ }^{5}$ Although considerably weaker compared to $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bonds or electrostatic interactions in ionic crystals, the contribution of $\mathrm{CH} \cdots \pi$ contacts is commonly regarded to be crucial for dynamic interaction of phospholipid bilayers with proteins or pharmaceuticals, cotton dying, cohesion between graphite and hydrocarbons in rubber, and other molecular phenomena in biology and materials science. ${ }^{2}$ The nature of weak $\mathrm{CH} \cdots \pi$ bonds is still disputable, particularly, as only few crystal structures with undisturbed $\mathrm{CH} \cdots \pi$ interactions were reported. Therefore, structures where the character of $\mathrm{CH} \cdots \pi$ bonds is clearly manifested, like in polymorphs of compounds incapable of interacting via stronger forces, are particularly valuable. The reported low-temperature crystal structure of PA (denoted PA α) is triclinic, space group $P \overline{1} .{ }^{3}$ In the unit cell, there are five molecules ($Z=5$), of which one is head-to-tail disordered in two half-occupied coplanar orientations related by the inversion center (Figure 1). Moreover, the density ($\rho=1.100$ $\mathrm{g} \mathrm{cm}^{-3}$) and mp (228.2 K) of PA are exceptionally low compared to those of 1,4 -diethynylbenzene ($1.202 \mathrm{~g} \mathrm{~cm}^{-3}, 369.5 \mathrm{~K}$) and $1,3,5$ triethynylbenzene ($1.178 \mathrm{~g} \mathrm{~cm}^{-3}, 376-377 \mathrm{~K}$); the mp of PA is even much lower than that of benzene (278.5 K). ${ }^{6}$ These properties indicate inefficient crystal packing in PA α. In ethynylbenzenes, alkynyl hydrogens are acidic, and the ethynyl groups act as the potential H -donors in hydrogen bonds, while either triple bond or aromatic π-electrons can be H -acceptors. The structures of $1,4-$ diethynylbenzene and 1,3,5-triethynylbenzene are governed by $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ contacts and arene rings stacking, while that of highly symmetric benzene/acetylene 1:1 complex is dominated by $\equiv \mathrm{CH} \cdots \pi$ (arene) contacts. ${ }^{7}$ PA α represents an intermediate structure, with both $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ and $\equiv \mathrm{CH} \cdots \pi($ arene $)$ interactions present (Figure 1), and the aromatic rings show edge-to-face arrangement ${ }^{8}$ characteristic of benzene polymorphs. ${ }^{9}$ This suggested that $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ interactions are stronger than $\equiv \mathrm{CH} \cdots \pi($ arene $) .{ }^{10}$ In this study, we have shown that pressure freezing of PA favors the cooperative $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ over $\equiv \mathrm{CH} \cdots \pi$ (arene) interactions, and their changed balance results in a new ordered PA β phase, in an unprecedented polymorphic relation to PA α.

We performed a single-crystal diffraction study on PA, in situ pressure-frozen in a diamond anvil cell (DAC). The new highpressure $\mathrm{PA} \beta$ phase has been found to be the stable phase of PA from its freezing pressure at 0.4 to $1.25 \mathrm{GPa},{ }^{11}$ preceding its polymerization at ca. 395 K (Figure 2). Low-T and high-P

Figure 1. Crystal structure of $\mathrm{PA} \alpha$ (left) and $\operatorname{PA} \beta$ (right) viewed along axis \boldsymbol{a}. Two sites of disordered molecule C in PA α and two corresponding displaced molecules in phase $\mathrm{PA} \beta$ are indicated in red and blue. The $\equiv \mathrm{CH} \cdots \pi$ interactions are represented by the green dashed lines.

Figure 2. Stages of the single-crystal $\mathrm{PA} \beta$ growth inside the DAC chamber: (a) from crystal seed to single crystal filling the chamber at 0.40 GPa ; (b) at 0.43 GPa ; (c) at 0.51 GPa ; (d) PA in most of the chamber volume polymerized, except for the remains of $\mathrm{PA} \beta$ single crystal slowly disintegrating at pressure $>0.51 \mathrm{GPa}$. The last picture shows the polymerized sample in transmission mode. A small ruby chip for pressure calibration is placed close to the chamber center.
polymorphs α and β are nearly isostructural: they crystallize in the same space group $P \overline{1}$ with very similar unit-cell dimensions, except for parameter c by ca. $1 / 5$ longer in PA $\beta .{ }^{12}$ The density of $\mathrm{PA} \beta$ at 0.4 GPa of $1.131 \mathrm{~g} \mathrm{~cm}^{-3}$ is only slightly higher than that of PA α, but still lower than that in other analogous compounds.

The arrangement of two ordered molecules in PA α, labeled A and B , remains almost unchanged in $\mathrm{PA} \beta$, while the disordered molecule C in PA α is replaced in PA β with two fully ordered molecules. These two ordered molecules are related through the inversion center located between them at about $1.6 \AA$ to the phenyl rings (Figure 1). Thus Z of the polymorphs is different: 5 in PA α and 6 in PA β. The molecular arrangement in $\mathrm{PA} \beta$ clearly favors the $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ over $\equiv \mathrm{CH} \cdots \pi($ arene $)$ interactions, compared to phase PA α (Table 1).

The predicted course of pressure-induced transformation in phase PA α and $\mathrm{PA} \beta^{13}$ was that the disorder of the molecule C would be eliminated and space group symmetry would lower to $P 1$. Presently, only two $P 1$ symmetric structures with $Z=5$ are known, and the ordered PA crystal was a candidate for yet another exceptional

Table 1. The Number of H-Donors (D) and H-Acceptors (A) in $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ and $\equiv \mathrm{CH} \cdots \pi$ (arene) Bonds Formed by Symmetry-Independent Molecules A, B, and C in Polymorphs α and β

interaction	$\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$			$\equiv \mathrm{CH} \cdots \pi($ arene $)$	
	phase α	phase β		phase α	phase β
molecule A	$-/-$	$-/-$		$1 \mathrm{D} /-$	$1 \mathrm{D} /-$
molecule B	$1 / 2 \mathrm{D} /-$	$1 \mathrm{D} / 1 \mathrm{~A}$		$1 / 2 \mathrm{D} / 1^{1 / 2} \mathrm{~A}$	$-/ 1 \mathrm{~A}$
molecule C	$-/ 1 \mathrm{~A}$	$1 \mathrm{D} / 1 \mathrm{~A}$		$1 \mathrm{D} /-$	$-1-$
total	$11 / 2$	4		2	
	$1 / 2 \mathrm{D} / 1 \mathrm{~A}$	$2 \mathrm{D} / 2 \mathrm{~A}$		$21 / 2 \mathrm{D} / 1^{1 / 2} \mathrm{~A}$	$1 \mathrm{D} / 1 \mathrm{~A}$

Figure 3. The cavity between van der Waals surfaces of ordered molecules A and B in phase PA α, containing molecule C (represented as small balls and red sticks) in one of its two positions. The size of the cavity is $8.0 \times$ $3.3 \AA$ along the directions indicated by blue arrows; the longest, medium, and shortest dimensions of the van der Waals model of the PA molecule are $9.5 \times 6.5 \times 3.4 \AA$, respectively.
structure of this type. To check this possibility, we redetermined the temperature-frozen PA structures at 225 and 100 K -in both temperatures, disordered phase PA α was obtained, the same as that previously determined at $125 \mathrm{~K} .{ }^{3}$ It occurs that the channel cavities outside the van der Waals surface of ordered molecules in PA α are too narrow to allow the PA molecules to rotate (Figure 3). Hence the disorder in phase PA α is static. On the other hand, due to the C_{i}-symmetric site of molecule C in the $\mathrm{PA} \alpha$ structure, its ordering would not affect the balance of intermolecular interactions. Meanwhile, the formation of the $\mathrm{PA} \beta$ polymorph increases the number of $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ bonds in the structure, and a cooperative system of four such bonds is formed as a cyclamer around the inversion center. The preference for the formation of cooperative arrangements of the $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ bonds was postulated by Steiner. ${ }^{14}$

Comparisons of polymorphs often reveal similarities in their structures extending in one, two, or locally in three dimensions. ${ }^{15}$ Both polymorphs of PA are almost identical, except for the disordered molecule C in $\mathrm{PA} \alpha$ and its two counterparts in $\mathrm{PA} \beta$, while the common space group $P \overline{1}$ and the pattern of molecular layers built of molecules A and B are retained.

The practical aspect of our investigations pertains to the solidstate thermal and pressure-induced polymerization of PA, studied by IR and Raman spectroscopy. ${ }^{16}$ It leads to red organic glass of unknown structure. Our attempts to pressure polymerize PA isothermally at 295 K began by orange coloration of polycrystalline mass inside the DAC at about 4.0 GPa. Notably, single crystals of $\mathrm{PA} \beta$ were considerably resistant to polymerization both by pressure and temperature. Polymerization of liquid PA was much easier and clearly observable by progressive color changes (Figure 2). Up to 1.25 GPa, the polymerization process activates at about 395 K and is hardly pressure-dependent. Once the polymerization was triggered in the liquid phase, it progressively "consumed" the PA crystal from
its surface, as illustrated in Figure 2. After opening the DAC, the polymer was in the form of gel, which solidified on drying. This suggested that the polymerization was not complete, which was confirmed by the IR spectra recorded during the compression. A similar mixture was obtained by thermally induced polymerization at ambient pressure. ${ }^{17}$

In conclusion, the structure of pressure-frozen new polymorph β of PA, nearly fully isostructural with low-temperature form α, reveals a preference of PA molecules to form cooperative $\equiv \mathrm{CH} \cdots \pi(\mathrm{C} \equiv \mathrm{C})$ contacts in a cyclic tetramer rather than $\equiv \mathrm{CH} \cdots$ π (arene) ones. This type of molecular association provides additional stability of $\mathrm{PA} \beta$ compared to $\mathrm{PA} \alpha$, owing to which polymerization is achieved easier in liquid PA or in PA α by rising temperature; even pressure exceeding 1.5 GPa (ca. $1.5 \times 10^{4} \mathrm{~atm}$) starts the polymerization process in $\mathrm{PA} \beta$ from the crystal surface. It illustrates the stabilizing role of weak $\mathrm{CH} \cdots \pi$ contacts, particularly at high pressure when their energy considerably increases compared to other interactions.

Acknowledgment. This study was supported by the Polish Ministry of Scientific Research, Grant No. N N204 195633.

Supporting Information Available: Details on crystallization, measurement techniques, additional microscopic images, IR spectra, Hirshfeld surfaces, structural dimensions, and a detailed description of molecular disorder in PA α. This material is available free of charge via the Internet at http://pubs.acs.org. Supplementary crystallographic data for this paper, CCDC-648809 and CCDC-648808 (PA α), CCDC648803, CCDC-648804, CCDC-648805, CCDC-648806, and CCDC$648807(\mathrm{PA} \beta)$, can be obtained from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk.

References

(1) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632-2657.
(2) (a) Nishio, M.; Hirota, M.; Umezawa, Y. The CH/ $\boldsymbol{\pi}$ Interaction. Evidence, Nature, and Consequences; Wiley-VCH: New York, 1998. (b) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond In Structural Chemistry and Biology; Oxford University Press: Oxford, 1999; pp 152-157, 169175. (c) Nishio, M. CrystEngComm 2004, 6, 130-158.
(3) Weiss, H.-C.; Bläser, D.; Boese, R.; Doughan, B. M.; Haley, M. M. Chem. Commun. 1997, 1703-1704.
(4) Furlani, A.; Russo, M. V. In Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC Press: New York, 1996; Vol. 8, pp 6481-6492.
(5) Donohue, J. In Structural Chemistry and Molecular Biology; Rich, A., Davison, N., Eds.; Freeman: San Francisco, 1968; pp 443-465.
(6) For calculated densities for ethynylbenzene, 1,4-diethynylbenzene, and 1,3,5-triethynylbenzene at 125 K , see ref 3 .
(7) Boese, R.; Clark, T.; Gavezzotti, A. Helv. Chim. Acta 2003, 86, 10851100.
(8) Hunter, C. A. Chem. Soc. Rev. 1994, 101-109.
(9) Budzianowski, A.; Katrusiak, A. Acta Crystallogr., Sect. B 2006, 62, $94-$ 101.
(10) Robinson, J. M. A.; Kariuki, B. M.; Gough, R. J.; Harris, K. D. M.; Philp, D. J. Solid State Chem. 1997, 134, 203-206.
(11) The experiments at $0.40,0.43$, and 0.51 GPa were performed for the neat compound, while at 0.76 and 1.25 GPa , the $1: 1$ volume ratio mixture with methanol was pressurized in order to dilute PA and allow crystal growth at higher pressure.
(12) When comparing $225 \mathrm{~K} / 0.1 \mathrm{MPa}$ with $295 \mathrm{~K} / 0.4 \mathrm{GPa}$ structures to minimize the influence of thermodynamic conditions on the molecular volume.
(13) Tomaszewski, P. E. Phase Transitions 1992, 38, 127-220.
(14) Steiner, T. J. Chem. Soc., Chem. Commun. 1995, 95-96.
(15) Fábián, L.; Kálmán, A. Acta Crystallogr., Sect. B 2004, 60, 547-558.
(16) (a) Santoro, M.; Ciabini, L.; Bini, R.; Schettino, V. J. Raman Spectrosc. 2003, 34, 557-566. (b) Schettino, V.; Bini, R. Phys. Chem. Chem. Phys. 2003, 5, 1951-1965.
(17) (a) Kern, R. J. J. Polym. Sci., Part A 1969, 7, 621-631. (b) Chauser, M. G.; Anisimova, O. S.; Kol'tsova, L. S.; Zaichenko, N. L.; Cherkashin, M. I. Izv. Akad. Nauk. SSSR, Ser. Khim. 1988, 67-70.

JA074885R

